Thermal Power Plants
They use water as working fluid. Nuclear and coal based power plants
fall under this category. The way energy from fuel is getting
transformed into electricity forms working of a power plant. In a
thermal power plant a steam turbine is rotated with help of high
pressure and high temperature steam and this rotation is transferred to a
generator to produce electricity.
|
Fig.1 Power is produced in thermal power plants by rotating steam turbine |
Energy absorption from steam
When turbine blades get rotated by high pressure high temperature
steam, the steam loses its energy. This in turn will result in a low
pressure and low temperature steam at outlet of the turbine. Here steam
is expanded till saturation point is reached. Since there is no heat
addition or removal from the steam, ideally entropy of the steam remains
same. This change is depicted in following p-v and T-s diagrams. If we
can bring this low pressure, low temperature steam back to its original
state, then we can produce electricity continuously.
|
Fig.2 Pressure and temperature drop of steam when turbine absorbs energy from it |
Use of Condenser
Compressing a fluid which is in gaseous state requires huge amount of
energy,so before compressing the fluid it should be converted into
liquid state. A condenser is used for this purpose, which rejects heat
to the surrounding and and converts steam into liquid. Ideally there
will not be any pressure change during this heat rejection process,
since the fluid is free to expand in condenser. Changes in fluid are
shown in p-v and T-s diagram below.
|
Fig.3 Use of condenser in order to transform vapor into liquid state |
Compressor
At exit of condenser fluid is in liquid state, so it is easy for a
compressor to raise its pressure.During this process volume and
temperature (2-3 deg.C rise)of fluid hardly changes, since it is in
liquid state. Now the fluid has regained its original pressure.
|
Fig.4 Compressor pumps the fluid to its original pressure |
Heat Addition in Boiler & Rankine Cycle
Here external heat is added to the fluid in order to bring fluid back
to its original temperature. This heat is added through a heat
exchanger called boiler. Here pressure of the fluid remains same, since
it is free to expand in heat exchanger tubes. Temperature rises and
liquid gets transformed to vapour and regains its original temperature.
This completes the thermodynamic cycle of thermal power plant called
Rankine Cycle. This cycle can be repeated and continuous power
production is possible.
|
Fig.5 Heat addition at boiler brings the fluid to its original temperature |
Condenser Heat Rejection - Cooling Tower
In order to reject heat from condenser a colder liquid should made
contact with it. In a thermal power plant continuous supply of cold
liquid is produced with help of a cooling tower. Cold fluid from cooling
tower absorbs heat from condenser and gets heated, this heat is
rejected to atmosphere via natural convection with help of a cooling
tower.
Boiler furnace for Heat Addition
Heat is added to the boiler with help of boiler furnace. Here fuel
get react with air produces heat. In a thermal power plant fuel can be
either coal or nuclear. When coal is used as a fuel it produces lot of
pollutants which has to be removed before ejecting to the surrounding.
This is done using a series of steps, most important of them is electro
static precipitator (ESP) which removes ash particles from exhaust. Now
much cleaner exhaust is rejected to atmosphere via a stack.
|
Fig.6 Main accessories of Rankine cycle - Cooling tower, Boiler furnace, ESP & Chimney |
Optimizing a Thermal plant performance
There are various flow parameters which has to be fine-tuned in order
to get optimum performance from a thermal power plant.Lowering the
condenser temperature or raising the average boiler temperature will
result in a high efficiency power plant cycle according to 2nd law of
thermodynamics (Carnot efficiency),most of the performance improving
technologies are working on this idea. Some latest trends are listed
below.
Expanding Turbine After Saturation
Expanding the steam in the turbine even after reaching the saturation
point may be a dangerous affair. As the steam goes below saturation,
wetness of the steam increases. This condensed water droplets collide
with turbine blade rotating at high speed, thus can cause extreme tip
erosion to the turbine blades. Turbine blade tip erosion is shown in
figure below. But as you expand more you will be able to absorb more
energy from the steam, thus increasing power plant efficiency. Up to 15%
wetness level is considered to be safe for steam turbine operation. So
most of the steam turbine will expand up to this point in order to
extract maximum energy from the fluid. This is shown in figure below.
|
Fig.7 Expanding turbine below saturation point in order to gain maximum power from steam |
Raising average boiler temperature
If you can increase average heat addition temperature of boiler that
will result in power plant with higher efficiency. One way to do this is
to increase the compressor pressure. This will allow shifting
saturation point of boiler heat addition will to higher level, thus
providing higher average temperature of heat addition. This is shown inf
figure below. The blue line represents change in cycle after raising
the compressor pressure.
|
Fig.8 Raising compressor pressure in order achieve higher average boiler temperature |
ليست هناك تعليقات:
إرسال تعليق